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Abstract 
Motivation: An important challenge in gene expression analysis is to improve hub gene selection to 
enrich for biological relevance or improve classification accuracy for a given phenotype. In order to 
incorporate phenotypic context into co-expression, we recently developed an epistasis-expression 
network centrality method that blends the importance of gene-gene interactions (epistasis) and main 
effects of genes. Further blending of prior knowledge from functional interactions has the potential to 
enrich for relevant genes and stabilize classification.  
Results: We develop two new expression-epistasis centrality methods that incorporate interaction 
prior knowledge. The first extends our SNPrank (EpistasisRank) method by incorporating a gene-
wise prior knowledge vector. This prior knowledge vector informs the centrality algorithm of the incli-
nation of a gene to be involved in interactions by incorporating functional interaction information from 
the Integrative Multi-species Prediction (IMP) database. The second method extends Katz centrality 
to expression-epistasis networks (EpistasisKatz), extends the Katz bias to be a gene-wise vector of 
main effects and extends the Katz attenuation constant prefactor to be a prior-knowledge vector for 
interactions. Using independent microarray studies of major depressive disorder, we find that includ-
ing prior knowledge in network centrality feature selection stabilizes the training classification and 
reduces overfitting. 
Contact:	brett-mckinney@utulsa.edu  
Supplementary information:	Supplementary data are	available	at	Bioinformatics	online. 

 
 

1 Introduction  
Hubs in gene co-expression networks likely play an important role 

in understanding the regulation of biological processes and pheno-
types. Recent studies have investigated the potential for co-expression 
network hubs to be used to prioritize genes for statistical inference. 
GeneRank (Morrison, Breitling et al. 2005) used the PageRank algo-
rithm (Page, Brin et al. 1999) to prioritize genes by combining gene 
co-expression with external information, such as Gene Ontology and 
protein-protein interactions. The constant damping constant in Pag-
eRank was extended to a damping vector in Ref. (Fu, Lin et al. 2006), 

and the usage of this damping vector to incorporate prior knowledge 
in GeneRank was discussed in Ref. (Demidenko 2015).  

Co-expression network hubs do not explicitly use outcome or phe-
notype information. This controls the risk of overfitting in classifica-
tion but also loses important contextual information about connectivi-
ty influenced by the phenotype. We developed a gene expression 
centrality (EpistasisRank) that includes phenotype context by compu-
ting statistical interactions (e.g., epistasis) between transcripts 
(Lareau, White et al. 2015) in an epistasis-expression or differential 
co-expression network (McKinney, White et al. 2013). Prior to this 
generalization to expression data, we had developed a SNPrank cen-
trality for epistasis networks in GWAS (McKinney, Crowe et al. 
2009, Hu, Andrew et al. 2013). In the current study, we extend the 
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generalized EpistasisRank method to use a gene-wise interaction prior 
probability vector, and we develop a new epistasis network centrality 
based on Katz centrality (Katz 1953) that combines main and interac-
tion effects as well as prior knowledge when ranking the importance 
of predictors.  

2 Methods 

2.1 EpistasisRank and EpistasisKatz centrality with gene-
wise prior probability  

EpistasisRank centrality (ER) operates on a regression-based Ge-
netic Association Interaction (reGAIN) network (Pandey, Davis et al. 
2012), which is a weighted NxN matrix, B, where N is the number of 
genes. The diagonal, Bij, represents the main effect regression coeffi-
cient of the gene on the phenotype and the off-diagonal Bij is the inter-
action effect coefficient between genes on the phenotype. The formula 
for ER is a system of equations that can be solved through least 
squares: 

𝐸𝑅# =
𝐵##

𝑁 ∙ Tr(𝐵) + 𝑑#.
𝐵𝑖𝑗 ∙ 𝐸𝑅𝑗
𝑘𝑗

+
1 − 𝑑#
𝑁 .		(1)
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In the first term, each gene i gets a contribution to network importance 
from the gene’s main effect (Bii), where the trace of B, Tr(B), is a 
normalization. In the second term, each gene i gets a contribution 
from its interaction partners Bij proportional to the importance of the 
partners, ERj, normalized by the degree of gene j, kj (non-zero), from 
the B matrix. This total interaction contribution is weighted by the 
prior probability di for gene i to be involved in interactions. The prior 
probability vector di is the normalized degree of the IMP network. 
The last term gives all genes a uniform importance proportional to the 
complement of its inclination for interaction, (1-di). 

Katz centrality is a two-parameter extension of eigenvector central-
ity (Supplementary Material). We extend Katz to EpistasisKatz (EK) 
with prior knowledge as follows  
 

𝐸𝐾# = 𝑑#.𝐵#6𝐸𝐾6 +	𝐵##.																	(2)
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In the first term, each gene i is given network importance based on the 
EK weights, EKj, of its interaction partners and their Bij reGAIN re-
gression weights. The interaction term is weighted by IMP prior 
knowledge vector di. In standard Katz, this prefactor is a constant that 
attenuates the centrality contribution of more distant connections. 
Thus, we extend the attenuation constant in Katz to allow for gene-
specific attenuation (di), which is the IMP-based prior probability for 
interactions. In the second term, sometimes referred to as the bias 
vector, each gene is assigned importance based on its main effect, Bii. 
In standard Katz, this second term is a vector of repeated constants. 
This extends Katz to allow a vector of gene-wise constants.  

2.2 Data Processing  
We identified two gene expression data sets from GEO for major 

depressive disorder that we refer to as Cambridge (Leday, Vertes et al. 
2017) and Japan (Miyata, Kurachi et al. 2016). We Z-transformed 
each dataset based on their respective controls to make the data sets 
more comparable to each other (Wang, Oh et al. 2016). We were also 
concerned about the imbalanced case/control ratio in the Cambridge 

(training) data with its 128 cases and 64 controls. Thus, we under-
sampled (Lina 2015) the case samples in the Cambridge data set to 
obtain a balance of 64 cases and 64 controls. In the Japan (testing) 
data set, there are 20 cases and 12 controls. In addition, we filtered the 
top 5,000 genes using coefficient of variation across the two data sets. 
For prior knowledge, we used the 5,000 genes to query IMP to con-
struct a network based on predicted functional interactions, and then 
we computed the normalized degree of each gene i of the IMP net-
work as the prior knowledge vector di. 

3 Results 
We compared training accuracy and validation accuracy using each 

centrality method (PageRank, Katz, EK, and ER) for feature selection 
with and without prior knowledge (Fig. 1). To avoid overfitting, we 
used nested cross-validation (CV) to prevent feature selection from 
causing overfitting (Varma and Simon 2006, Le, Simmons et al. 
2017). We used xgboost binary classification on boosted decision 
trees (Chen and Guestrin 2016) for the outer CV loop and centrality 
feature selection methods in the inner CV loop.  

Fig. 1. Training accuracy (Cambridge data) and independent validation accuracy 
(Japan data) with centrality feature selection without prior knowledge (left panels) and 
with prior knowledge (right panels). Top: co-expression network centrality feature 
selection methods, PageRank (PR) and Katz. Bottom row: expression-epistasis net-
work centrality methods, EpistasisRank (ER) and EpistasisKatz (EK). Accuracies 
computed by xgboosted trees with nested cross-validation. Xgboost accuracies without 
feature selection also shown (squares). 

All centrality feature selection methods improve validation accura-
cy over xgboost classification without feature selection (Fig. 1). Katz-
based centralities have the highest accuracies. Without prior 
knowledge (left panels of Fig. 1), all feature selection methods show a 
large drop in validation accuracy relative to the training accuracy 
(overfitting) despite use of nested CV. Use of prior knowledge to 
inform centrality (right panels of Fig. 1) yields more stable accuracy 
across training and validation sets. The training accuracies are lower 
than without prior knowledge; however, they are more consistent with  
and a more realistic estimate of the independent validation accuracy.  
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4 Discussion 
In a previous study, we used the Integrative Multi-species Predic-

tion (IMP) database (Wong, Park et al. 2012) to predict functional 
networks from epistasis network seed genes from SNPrank in GWAS 
data (McKinney, Lareau et al. 2016).  In the current study, we com-
pute the degree centrality (di) of each gene i from an IMP network and 
use this as a prior probability vector for the interaction term in the 
new EpistasisRank (ER) and EpistasisKatz (EK) epistasis-expression 
centralities for a network from an independent data set. We hypothe-
size that incorporating functional-connectivity prior knowledge into 
epistasis-expression network centrality will improve the generaliza-
tion of classification accuracy 

We extended the ER centrality to include a gene-wise vector to in-
tegrate prior knowledge. We generalized Katz centrality in EK to 
include a gene-specific vector, which we use to incorporate the prior 
probability for interaction effects. We extended the constant bias 
vector term in Katz to incorporate main effect contributions from the 
reGAIN matrix. We found prior knowledge led to more stable training 
accuracy and improved testing validation accuracy in gene expression 
analysis of major depressive disorder.  

Prior knowledge also led to an increase in the number of signifi-
cantly enriched relevant pathways (Supplement). For example, includ-
ing prior knowledge led to statistically significant enrichment of Sero-
tonin Receptor and G coupled protein receptor (GPCR) pathways, 
which are related to mood disorders (Imbrici, Conte Camerino et al. 
2013). The ER and EK methods apply to epistasis networks in GWAS 
as well as gene expression, and the prior probability vector can blend 
information between heterogeneous data-driven networks as well as 
prior knowledge from IMP or other prior networks.  

The network construction and centrality methods, including Epi-
stasisRank and EpistasisKatz, are included in our Rinbix R 
package at https://github.com/insilico/Rinbix. The specific feature 
selection and classification analysis in the current study is reproduced 
in https://github.com/insilico/PriorKnowledgeEpistasisRank.  
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